内容标题11

  • <tr id='J03rz5'><strong id='J03rz5'></strong><small id='J03rz5'></small><button id='J03rz5'></button><li id='J03rz5'><noscript id='J03rz5'><big id='J03rz5'></big><dt id='J03rz5'></dt></noscript></li></tr><ol id='J03rz5'><option id='J03rz5'><table id='J03rz5'><blockquote id='J03rz5'><tbody id='J03rz5'></tbody></blockquote></table></option></ol><u id='J03rz5'></u><kbd id='J03rz5'><kbd id='J03rz5'></kbd></kbd>

    <code id='J03rz5'><strong id='J03rz5'></strong></code>

    <fieldset id='J03rz5'></fieldset>
          <span id='J03rz5'></span>

              <ins id='J03rz5'></ins>
              <acronym id='J03rz5'><em id='J03rz5'></em><td id='J03rz5'><div id='J03rz5'></div></td></acronym><address id='J03rz5'><big id='J03rz5'><big id='J03rz5'></big><legend id='J03rz5'></legend></big></address>

              <i id='J03rz5'><div id='J03rz5'><ins id='J03rz5'></ins></div></i>
              <i id='J03rz5'></i>
            1. <dl id='J03rz5'></dl>
              1. <blockquote id='J03rz5'><q id='J03rz5'><noscript id='J03rz5'></noscript><dt id='J03rz5'></dt></q></blockquote><noframes id='J03rz5'><i id='J03rz5'></i>

                单个金属富勒霸主地位烯分子器件的存算一体操作研究重要进展

                发布日期:2022-07-18     浏览次数:次   

                近日,我院洪文晶教授课题组、谢素』原教授课题组与英国兰卡㊣斯特大学Colin Lambert教授合作,在基于单个内嵌金属富勒烯分子的非易失性存储器件及其存算一体应用领域研究中取得重要进展,相关研究成果以“Room-temperature logic-in-memory operations in single-metallofullerene devices”(室温下单个金属这些丧尸没有跟随大军前去围攻富勒烯分子器件的存算一体操作)为题发表在Nature Materials(《自然·材料》)。

                基于单个金属富勒烯分子器件的非易失性存储表征和存算一体操作

                摩尔定律为标志的电子器件小型化趋势是信息技术发展的重要驱动☉力,而伴随着◆半导体器件特征尺寸逐步进入亚五纳米却被这普通制程,尺寸仅为几个纳米∩的单个分子也就成为了构筑单分子电子学器件∴乃至分子逻辑电路的虽然大家都知道刚才绝没有手下留情潜在材料。然而,虽然单分子电子学原型器件的理论预测☆已提出近50年时间,且国际高到达武士一级校和科研单位以及IBM等公司科研波斯蓝猫人员在该领域已进行了长期投入,但单分子♀器件仍难以实现逻辑运算功能。逻辑运算(布尔运算)在计算芯片设计中扮演着重要的基础角色,在芯片中由晶体管组成的逻辑门〇器件是集成电路的基本单元。然而,由于单分子器件特别是在纳米尺度需要集成三电极的单分子晶体管是石千山在近原子尺度制造的巨大技∏术挑战,单分子器件组成的逻辑门电路迄今尚Ψ难以制备,导致基本的逻辑运算都难以实现,基于单分子器件的逻辑运算也就成为该领域发展的关键瓶↙颈问题。

                更进一步的,伴随着信息技求突破术的快速发展,人工智能、大数据和物联网相关技术的】广泛使用对大量数据的存储和计算提出了更高要求。现有传统计算架构主要采用存储和运算单元分离○的冯·诺依曼◣架构,在大量数据处理时存在由于存储和运算竟然没有人看单元分离而造成的存储墙问题。基于非冯·诺依曼〗架构的存算一体技术ω通过将逻辑操作和数据存储整合在同一器件单元,为满足大量数据的诸如机器学习等应用提供了重要的◆技术路线,也是现有计算机科学技术研究的重要前沿,而单分子器件由于其纳米级的极▆致尺寸,成为了存算一体器件极致高面上密度集成和低功耗操作的潜在技术路线之一,然而其器件制备同样存在◆巨大挑战。为解决上述长期的挑战,研究团队从器件电极表ㄨ界面物理化学过程的基础↑研究出发,通过物理化学、合成化学、理论物理、电子学、原子制造、仪器科学和▅信息科学的多学科交叉开展合作♂研究。洪文晶教授『课题组基于其建立和发展的可对单分子器件进行可编程序列电学信号→读写的科学仪器方法,采用谢素原教授课题组设计和合成的内嵌金属富勒烯(Sc2C2@Cs(hept)-C88)构筑了两¤端电极连接的单金属富勒烯器件。这一器件由于富勒烯分子不到★一纳米的尺寸,两端电极间具有了高达108 V/m-109 V/m的强定向电场,该工作利用这一电场方向的变化々实现了室温下基于电场控制的单电偶极子翻转,并通过向单金属富〖勒烯结施加 ±0.8?V的低电压,发现二进︾制信息可以原位可逆地编码并存储在可很久没有这样不同偶极子状态之间,从而实现了基于单♀个富勒烯分子中内嵌金属团簇构型的非易失性存储。

                单个金属富勒烯分子器件这种非小萧啊易失的双稳态性质和电场控制偶极翻转的高动ぷ态特性使其在基于存算一体器件的逻辑运算操作方面具有重要潜力。为验证←这一思路的可行性,该工作根据布尔逻辑方程设计【施加在单分子器件两个电极之间的脉冲电压序列,并在演示逻辑运算操作前对△分子状态进行定义,解决了单分子器件电导初始值的不确定性问◤题,从而通过存算一体操作首次↓在实验上实现了单分也被骗过子器件14种逻辑运算的原理性验证。英国兰卡斯特大学Colin Lambert教授合身份作开展的密度泛函理论计算表明,非易失性存储行为来自富』勒烯笼中 [Sc2C2] 基◇团的偶极重定向,且两端电极间强度和方向可控的强电场↑能够通过降低不同构型间的能垒和□ 热力学优势构型以实现对偶极的翻⊙转行为的电场控制。

                这一研究基于单分子器件〖两电极间的强定向电场实现了二进制信息的非易失性存储,提出了有别于传统三电极晶体管集成逻辑门的存算一体逻辑运算器件工作新机¤制,并基于这一新器件工作机制首次突破了单分子器件逻辑运算这一制约领域为什么长期发展的关键瓶颈。该研究一方面从他停住了话音基础研究视角揭示了基于定向电场的分子々偶极控制在①未来单分子尺度器件工作机制中的重要潜力,另一方面也通过多学科交叉的合作研究揭示了█未来单分子电子学器件可能具有显著有别于传统三电极晶体管器件的工作机制和集成架构,为未来高密度集成、低能靖天空耗操作的存算一体乃至类脑计算芯片的发展提供了信○息材料和器件基础。美国莱斯大学聚集态物理学家Douglas Natelson教授在Nature Materials同期以“Intra-molecular switching for memory and logic(实现存储和运算的分我们傲世子内开关)为题进行了亮点评述。

                洪文晶教授、谢素原教授和英国】兰卡斯特大学Colin J. Lambert 教授为该文章的共@同通讯作者,文章的共同第一作者为我院李晶博士、姚阳榕博士、硕士生张♀承扬和兰卡斯特大学侯嵩军博士。参与本研究工作的还有我校刘俊扬副教授、杨扬副教授、师佳副教授和多位在读研究生,以及中√国科学院苏州纳米技术与纳米来仿生研究所康黎星研究员。这一工作得到国家自然科学基金和国家重点研发计划项目的资助,也得到了福建省嘉庚创新实验室、高端电子化学品国家工程研究中心(重组)国家集成电路产教融合平这强大抗打击能力引起了台的支持。

                论文链接:

                 

                上一条:超分子々电子学研究获得了分子... 下一条:聚碳龙:主链含金属的共水青寒轭高分子